
Volume 06 Issue 01-2026 139 

                 

 
 

   
  
 
 

International Journal of Advance Scientific Research  
(ISSN – 2750-1396) 
VOLUME 06 ISSUE 01   Pages: 139-149 

OCLC – 1368736135   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

ABSTRACT 

The accelerating convergence of artificial intelligence, large-scale computer vision, and high-performance 

computing has transformed both industrial infrastructure monitoring and data-intensive clinical imaging. 

These domains now rely on heterogeneous graphics processing unit ecosystems that must operate 

continuously under heavy computational and environmental stress while maintaining reliability, 

determinism, and reproducibility. Recent research has demonstrated that even small deviations in GPU 

health, thermal stability, or firmware state can propagate into subtle model degradation, unpredictable 

inference errors, and biased decision-making in safety-critical applications. Within this evolving context, 

factory-grade diagnostic automation for GPUs has emerged as a foundational technological layer that 

underpins the credibility of artificial intelligence pipelines, as rigorously articulated in the work of Lulla, 

Chandra, and Ranjan (2025). Their investigation into automated diagnostic infrastructures for GeForce and 

data-centre GPUs represents a critical inflection point in understanding how hardware-level introspection, 

telemetry, and predictive maintenance shape the epistemic trustworthiness of computational intelligence. 

This article develops a comprehensive theoretical and applied framework that situates factory-grade GPU 

diagnostic automation at the centre of modern computer-vision-driven structural health monitoring and 

radiology-scale machine learning systems. Drawing on contemporary advances in crack detection, bridge 

inspection, surface damage analysis, and medical image interpretation, it argues that hardware reliability 

is no longer an invisible substrate but a co-determinant of algorithmic validity. By synthesizing research 

on deep learning-based defect detection, pixel-wise segmentation, UAV-enabled imaging, and large 

language model-assisted radiology reporting, the paper demonstrates that GPU diagnostics mediate not 

only performance but also fairness, reproducibility, and safety across these fields. The theoretical 
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contribution lies in framing GPU diagnostic automation as a form of infrastructural epistemology that 

governs how evidence is produced, processed, and trusted in digital sensing environments. 

Methodologically, the study adopts a multi-layered analytical design that integrates literature-based 

system modeling, comparative architectural analysis of modern GPU platforms, and conceptual mapping 

of diagnostic telemetry to machine learning reliability. This approach allows for the exploration of how 

automated fault detection, thermal profiling, memory integrity verification, and firmware consistency 

influence the stability of convolutional neural networks and large language models when deployed in real-

world inspection and medical settings. Results are interpreted through a critical lens that connects 

observed diagnostic capabilities with reported improvements in surface defect recognition, bridge damage 

detection, and radiology report accuracy. The findings suggest that hardware-aware AI pipelines exhibit 

measurably higher robustness, reduced drift, and greater transparency, corroborating the necessity of 

integrating factory-grade diagnostics into end-to-end system design (Lulla et al., 2025). 

The discussion extends these results into a broader scholarly debate concerning the invisibility of 

infrastructure in artificial intelligence research. It challenges the prevailing software-centric paradigm by 

demonstrating that GPU health monitoring constitutes a form of methodological control analogous to 

calibration in traditional scientific instrumentation. The article further explores ethical and regulatory 

implications, particularly in contexts such as post-earthquake building safety assessment and automated 

medical diagnosis, where erroneous outputs may carry severe societal consequences. Ultimately, this work 

advances the argument that factory-grade GPU diagnostic automation is not merely a technical 

convenience but a scientific necessity for sustaining the integrity of AI-driven knowledge production in 

both civil engineering and radiological practice. 

KEYWORDS 

GPU diagnostics, computer vision, structural health monitoring, radiology AI, deep learning infrastructure, 
hardware reliability  

INTRODUCTION  

The contemporary landscape of artificial 

intelligence is increasingly defined by its 

dependence on large-scale computational 

infrastructures, within which graphics processing 

units have become the primary engines of learning, 

inference, and data transformation. Across 

domains as diverse as civil infrastructure 

inspection and clinical radiology, deep neural 

networks now operate on streams of high-

resolution visual data that require sustained, high-

throughput parallel processing, a requirement that 

has elevated GPUs from peripheral accelerators to 

central epistemic instruments of scientific and 

industrial knowledge (Ferraris et al., 2023). This 

infrastructural centrality has, however, introduced 

a paradox. While AI research has invested 

enormous intellectual and financial capital into 

improving algorithms, datasets, and model 

architectures, comparatively little attention has 

been devoted to the physical and operational 

condition of the hardware that executes these 

models. The assumption that GPUs function as 
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neutral, stable substrates has become increasingly 

untenable, particularly as systems scale into 

heterogeneous, continuously operating clusters 

deployed in harsh industrial or clinical 

environments (Lulla et al., 2025). 

In structural health monitoring, for instance, 

computer vision systems now routinely inspect 

bridges, pavements, and buildings for cracks, 

corrosion, and other forms of deterioration. These 

systems employ convolutional neural networks, 

segmentation models, and feature fusion 

algorithms that process vast volumes of imagery 

captured by drones, mobile sensors, or fixed 

cameras (Huang et al., 2024). The reliability of such 

models is often evaluated in terms of accuracy, 

precision, and recall, yet these metrics implicitly 

presuppose that the underlying computational 

hardware performs deterministically and without 

degradation. Empirical studies in UAV-enabled 

bridge inspection have shown that even small 

fluctuations in image quality or processing latency 

can lead to missed defects or false positives, with 

significant implications for public safety (Wang et 

al., 2024). When these fluctuations originate from 

GPU overheating, memory corruption, or firmware 

inconsistencies, they are rarely detected or 

accounted for within conventional evaluation 

frameworks, thereby introducing a hidden layer of 
epistemic uncertainty. 

A similar dynamic is evident in medical imaging, 

where large language models and vision-language 

systems are increasingly integrated into radiology 

workflows to generate, label, and validate 

diagnostic reports (Abdullah and Kim, 2025). The 

promise of these systems lies in their capacity to 

reduce human error, increase throughput, and 

standardize interpretations across institutions 

(Kao and Kao, 2025). Yet radiological evidence is 

among the most consequential forms of data in 

modern healthcare, informing life-altering 

decisions about diagnosis, treatment, and 

prognosis. In this context, any undetected 

instability in the GPU hardware that supports 

image reconstruction, feature extraction, or report 

generation risks undermining the clinical validity 

of the entire pipeline (Bhayana, 2024). The 

growing reliance on foundation models trained on 

massive datasets such as MIMIC-CXR and CheXpert 

further amplifies this risk, as these models are 

sensitive to subtle numerical perturbations that 

may arise from hardware faults (Johnson et al., 
2024; Irvin et al., 2019). 

The work of Lulla, Chandra, and Ranjan (2025) 

marks a decisive intervention in this landscape by 

demonstrating how factory-grade diagnostic 

automation can be systematically embedded 

within GPU ecosystems to provide continuous, 

fine-grained visibility into hardware health. Their 

research shows that automated diagnostics are 

capable of detecting thermal anomalies, voltage 

irregularities, memory errors, and firmware 

mismatches before they escalate into performance 

degradation or outright failure. Importantly, this 

diagnostic layer operates not as an ad hoc 

troubleshooting tool but as an integral component 

of the GPU lifecycle, from manufacturing and 

deployment to operation and maintenance. By 

framing GPU health as a measurable, monitorable, 

and actionable variable, their work challenges the 

prevailing assumption that hardware reliability is 

an externality rather than a core determinant of 
computational validity. 

From a theoretical perspective, this shift invites a 

re-conceptualization of artificial intelligence 
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systems as socio-technical assemblages in which 

algorithms, data, and hardware co-produce 

outcomes. In the tradition of science and 

technology studies, instruments are not passive 

conduits but active mediators of knowledge, 

shaping what can be observed, measured, and 

inferred (Savino and Tondolo, 2023). GPUs, as the 

primary instruments of deep learning, thus 

warrant the same degree of scrutiny and 

calibration that scientists apply to microscopes, 

sensors, or spectrometers. In civil engineering, for 

example, the detection of micro-cracks in concrete 

using Mask R-CNN or similar architectures 

depends not only on the quality of training data but 

also on the numerical stability of convolution 

operations executed on GPUs (Huang et al., 2024). 

If these operations are compromised by hardware 

faults, the resulting defect maps may misrepresent 

structural conditions, leading to flawed 

maintenance decisions. 

The historical evolution of computer vision in 

infrastructure inspection underscores this point. 

Early approaches relied on manual visual 

inspection or simple edge detection algorithms 

that were computationally lightweight but prone to 

subjectivity and inconsistency (Xu et al., 2024). The 

advent of deep learning enabled far more 

sophisticated analyses, including multi-class 

damage detection, pixel-wise segmentation, and 

three-dimensional reconstruction of surfaces 

(Cheng et al., 2024). These advances, however, 

came at the cost of dramatically increased 

computational complexity, binding the epistemic 

quality of inspection outcomes ever more tightly to 

GPU performance. As models grew deeper and 

datasets larger, the margin for hardware-induced 

error narrowed, making factory-grade diagnostics 

a prerequisite for trustworthy deployment (Lulla 
et al., 2025). 

In radiology, a parallel historical trajectory can be 

observed. Traditional image interpretation 

depended on the visual acuity and experience of 

clinicians, augmented by relatively simple digital 

processing tools. The integration of AI has 

introduced automated report generation, anomaly 

detection, and cross-modal reasoning, 

transforming radiological practice into a hybrid of 

human and machine cognition (Salam et al., 2025). 

Yet this transformation has also rendered 

radiology more vulnerable to the opaque failures of 

complex computational systems. A corrupted GPU 

memory cell or an unstable tensor core may 

introduce subtle distortions into an image or a 

generated report, distortions that are unlikely to be 

detected by either clinicians or conventional 

software tests (Najjar, 2023). The epistemic stakes 

of such failures are profound, implicating patient 

safety, legal liability, and public trust. 

Despite these converging pressures, the scholarly 

literature has tended to treat hardware as a 

background condition rather than a variable of 

interest. Research on surface damage detection, for 

instance, focuses on improving feature extraction, 

data augmentation, and network architectures, 

with little discussion of how GPU reliability affects 

training convergence or inference stability (Li et al., 

2024). Similarly, studies on automated radiology 

reporting emphasize linguistic accuracy and 

clinical relevance while overlooking the 

computational substrates that enable these 

capabilities (Wang et al., 2023). This gap is not 

merely technical but conceptual, reflecting a 

broader tendency to separate software intelligence 

from material infrastructure. 
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The present article addresses this gap by 

articulating a comprehensive framework that 

integrates factory-grade GPU diagnostic 

automation into the theory and practice of AI-

driven inspection and imaging. By synthesizing 

insights from civil engineering, computer vision, 

radiology, and hardware architecture, it argues 

that diagnostic telemetry should be understood as 

a form of methodological metadata that 

contextualizes and stabilizes AI outputs. This 

perspective builds on the empirical evidence 

provided by Lulla et al. (2025), extending it into a 

broader epistemological and socio-technical 

analysis. The central thesis is that without 

systematic, automated insight into GPU health, the 

outputs of deep learning systems cannot be fully 

trusted, regardless of their algorithmic 

sophistication. 

The remainder of this article develops this thesis 

through an extensive methodological exposition, a 

detailed interpretive analysis of results drawn 

from the literature, and a theoretically rich 

discussion that situates GPU diagnostics within 

contemporary debates about AI reliability, 

transparency, and governance. By doing so, it seeks 

to reposition hardware diagnostics from the 

periphery to the centre of scholarly and industrial 

attention, thereby contributing to a more holistic 

and resilient understanding of artificial intelligence 

in both infrastructure and medicine. 

METHODOLOGY 

The methodological orientation of this study is 

grounded in the recognition that factory-grade GPU 

diagnostic automation cannot be adequately 

understood through a single disciplinary lens. 

Instead, it requires a multi-layered analytical 

approach that bridges hardware engineering, 

computer vision, and applied artificial intelligence. 

To achieve this integration, the methodology 

adopted here is primarily conceptual-analytical, 

drawing on systematic synthesis of peer-reviewed 

literature, architectural analysis of GPU platforms, 

and interpretive mapping between diagnostic 

telemetry and AI performance indicators. This 

approach aligns with the growing body of research 

in infrastructure-aware computing, which treats 

hardware not as a black box but as an active 

participant in computational epistemology (Lulla 
et al., 2025). 

The first methodological layer involves a 

comprehensive examination of contemporary GPU 

architectures and their diagnostic capabilities. 

Modern accelerators such as NVIDIA’s H100 

Tensor Core GPUs and AMD’s CDNA 3 architecture 

represent a departure from earlier generations in 

their emphasis on integrated telemetry, error 

correction, and predictive maintenance (NVIDIA, 

2022; Advanced Micro Devices, 2023). These 

platforms incorporate sensors for temperature, 

power consumption, and voltage stability, as well 

as mechanisms for detecting memory faults and 

execution errors. The analysis draws on vendor 

documentation and independent evaluations to 

map how these diagnostic features operate in 

practice and how they can be accessed through 

software interfaces. This architectural perspective 

provides the foundation for understanding how 

factory-grade diagnostics, as described by Lulla et 
al. (2025), are implemented at scale. 

The second methodological layer focuses on the 

role of GPUs within AI pipelines for infrastructure 

inspection and radiology. Here, the study 

synthesizes findings from a wide range of 
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computer vision and medical imaging research to 

identify the computational demands and 

sensitivities of state-of-the-art models. For 

instance, crack detection in curved surfaces using 

multi-image stitching requires precise alignment 

and interpolation operations that are highly 

sensitive to numerical precision and memory 

integrity (Cui and Zhang, 2024). Similarly, deep 

feature fusion for bridge damage detection 

involves the aggregation of high-dimensional 

tensors across multiple network layers, a process 

that can be disrupted by even transient hardware 

faults (Eltahir et al., 2023). In radiology, large 

language model-based report generation depends 

on stable matrix multiplications and attention 

mechanisms that are likewise vulnerable to 

hardware-level perturbations (Kao and Kao, 2025). 

By correlating these computational patterns with 

known GPU failure modes, the methodology 

establishes a conceptual link between diagnostics 
and model reliability. 

The third methodological layer consists of 

interpretive analysis, in which the diagnostic data 

described in the literature are mapped onto AI 

performance outcomes. While this study does not 

involve direct experimentation, it leverages 

reported results from numerous empirical 

investigations to infer how hardware health 

influences accuracy, robustness, and 

generalizability. For example, research on real-

time pavement crack detection has demonstrated 

that model performance degrades under 

conditions of high computational load and thermal 

stress, suggesting a potential role for diagnostic-

guided load balancing (Yaacob et al., 2024). In 

radiology, comparative analyses of closed-source 

and open-source language models have highlighted 

variability in error detection that may be partly 

attributable to differences in underlying hardware 

environments (Salam et al., 2025). These findings 

are interpreted through the lens of factory-grade 

diagnostics, as conceptualized by Lulla et al. 

(2025), to elucidate how automated monitoring 
could mitigate such variability. 

A critical component of the methodology is the 

systematic incorporation of scholarly debate and 

counter-arguments. Some researchers have argued 

that software-level redundancy and algorithmic 

robustness are sufficient to compensate for 

hardware faults, rendering extensive diagnostics 

unnecessary (Ferraris et al., 2023). Others contend 

that the cost and complexity of implementing 

factory-grade monitoring outweigh its benefits, 

particularly in resource-constrained settings 

(Savino and Tondolo, 2023). These positions are 

examined in light of the evidence provided by both 

infrastructure inspection and radiology studies, as 

well as the diagnostic efficiencies reported by Lulla 

et al. (2025). By juxtaposing competing 

perspectives, the methodology ensures that 

conclusions are not merely descriptive but 
critically grounded. 

Finally, the study adopts a reflexive stance toward 

its own limitations. The reliance on secondary 

sources means that causal inferences about GPU 

diagnostics and AI performance must be made 

cautiously, and the diversity of application contexts 

complicates direct comparison. Nevertheless, by 

triangulating across multiple domains and levels of 

analysis, the methodology aims to provide a robust 

and nuanced understanding of how factory-grade 

GPU diagnostics function as a foundational layer in 

contemporary AI systems. 

RESULTS 



Volume 06 Issue 01-2026 145 

                 

 
 

   
  
 
 

International Journal of Advance Scientific Research  
(ISSN – 2750-1396) 
VOLUME 06 ISSUE 01   Pages: 139-149 

OCLC – 1368736135   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interpretive synthesis of the literature reveals 

a consistent and theoretically significant pattern: 

AI systems that are implicitly or explicitly 

supported by robust GPU diagnostic 

infrastructures exhibit greater stability, 

transparency, and epistemic reliability than those 

that operate without such support. This pattern is 

evident across both civil infrastructure inspection 

and radiology-scale medical imaging, despite the 

substantial differences between these domains in 

terms of data modalities, regulatory environments, 

and operational constraints (Ferraris et al., 2023; 
Bhayana, 2024). 

In the context of structural health monitoring, 

numerous studies have documented the sensitivity 

of deep learning models to variations in 

computational conditions. For instance, bridge 

inspection systems that employ automated 

multiclass surface damage detection rely on 

consistent execution of convolutional and pooling 

operations to maintain accuracy across large image 

datasets (Huang et al., 2024). When GPUs 

experience thermal throttling or memory errors, 

these operations may produce subtly distorted 

feature maps, leading to misclassification of 

defects. Although such distortions are rarely visible 

at the pixel level, their cumulative effect can be 

substantial, particularly when models are deployed 

continuously over long periods, as in real-time 

monitoring of critical infrastructure (Wang et al., 
2024). 

Research on crack detection and surface damage 

analysis further corroborates this dynamic. Multi-

image stitching methods for curved surfaces 

depend on precise alignment of overlapping 

images, a process that involves intensive floating-

point computation (Cui and Zhang, 2024). If a 

GPU’s numerical precision is compromised by 

hardware instability, the resulting stitched images 

may exhibit misalignments that propagate into 

downstream segmentation and classification tasks. 

Studies that report inconsistent or context-

dependent performance in such systems often 

attribute these issues to data quality or algorithmic 

design, yet the evidence suggests that hardware 

health may be an under-recognized contributing 

factor (Yaacob et al., 2024). 

The diagnostic automation framework described 

by Lulla et al. (2025) directly addresses these 

vulnerabilities by providing continuous, factory-

grade monitoring of GPU parameters. Their results 

demonstrate that automated detection of thermal 

anomalies, power fluctuations, and memory faults 

enables proactive mitigation strategies, such as 

dynamic workload redistribution or targeted 

maintenance, that preserve computational 

integrity. When interpreted alongside the 

computer vision literature, these findings imply 

that many of the performance instabilities 

observed in infrastructure inspection systems 

could be reduced through systematic integration of 

GPU diagnostics. 

A parallel pattern emerges in radiology-scale AI 

applications. Large language models for automated 

report generation and error detection rely on 

stable execution of attention mechanisms and 

embedding operations, which are computationally 

intensive and highly sensitive to numerical noise 

(Kao and Kao, 2025). Comparative studies have 

shown that model outputs can vary across 

deployments even when software configurations 

are identical, a phenomenon that has been difficult 

to explain solely in terms of stochastic training 

processes (Salam et al., 2025). The existence of 
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such variability aligns with the diagnostic 

perspective advanced by Lulla et al. (2025), which 

suggests that undetected hardware differences and 

degradations may introduce subtle but systematic 

biases into AI outputs. 

The use of large-scale radiology datasets such as 

MIMIC-CXR and CheXpert further amplifies the 

importance of hardware reliability. Training and 

inference on these datasets involve billions of 

operations and prolonged GPU utilization, 

conditions under which even minor hardware 

faults can accumulate into significant deviations 

(Johnson et al., 2024; Irvin et al., 2019). The 

absence of factory-grade diagnostics in many 

research and clinical settings means that such 

deviations may go unnoticed, potentially 

undermining the reproducibility and clinical 
validity of AI-assisted diagnoses. 

Taken together, these results support a 

reinterpretation of AI performance metrics as 

conditional on hardware health. Accuracy, 

precision, and recall are not solely functions of data 

and algorithms but are co-produced by the physical 

state of the GPUs that execute them. The diagnostic 

automation framework articulated by Lulla et al. 

(2025) thus emerges as a critical enabler of reliable 

AI, transforming hardware from a hidden variable 

into a measurable and manageable component of 

system performance. 

DISCUSSION 

The implications of these findings extend far 

beyond technical optimization, reaching into the 

epistemological, ethical, and institutional 

dimensions of artificial intelligence. At a 

fundamental level, the integration of factory-grade 

GPU diagnostic automation challenges the 

prevailing software-centric paradigm that has 

dominated AI research and practice. By 

foregrounding hardware health as a determinant of 

algorithmic validity, it invites a reconfiguration of 

how scientific and industrial communities 

conceptualize reliability, accountability, and trust 

in computational systems (Lulla et al., 2025). 

From a theoretical standpoint, this shift resonates 

with long-standing debates in the philosophy of 

science about the role of instruments in knowledge 

production. Just as the calibration of a telescope or 

microscope shapes what can be observed and 

inferred, the diagnostic state of a GPU shapes the 

outputs of deep learning models. In structural 

health monitoring, for example, the identification 

of micro-cracks or early-stage corrosion is an 

inferential act mediated by layers of computation 

that depend on stable hardware execution (Bachiri 

et al., 2024). When GPU diagnostics reveal 

anomalies, they effectively signal a need for 

epistemic caution, akin to a warning that a sensor 
may be misaligned or degraded. 

This instrumental perspective also reframes 

debates about algorithmic bias and fairness. Much 

of the current discourse focuses on data 

representation and model architecture, yet 

hardware-induced variability may introduce 

systematic distortions that disproportionately 

affect certain classes of inputs. In bridge inspection, 

for instance, models may be more sensitive to 

subtle surface textures that are easily corrupted by 

numerical noise, leading to under-detection of 

specific defect types (Jiang et al., 2023). Factory-

grade diagnostics provide a means of detecting and 

correcting such distortions at their source, thereby 

contributing to a more equitable and reliable 

inspection regime. 
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In radiology, the ethical stakes are even higher. 

Automated report generation systems are 

increasingly used to support clinical decision-

making, raising concerns about accountability 

when errors occur (Najjar, 2023). If a misdiagnosis 

can be traced to an undetected GPU fault, the locus 

of responsibility becomes diffuse, implicating not 

only clinicians and software developers but also 

hardware manufacturers and system operators. 

The diagnostic automation framework described 

by Lulla et al. (2025) offers a path toward greater 

transparency by making hardware health an 
explicit and auditable component of AI workflows. 

Critics may argue that the cost and complexity of 

implementing factory-grade diagnostics are 

prohibitive, particularly in low-resource settings 

or small-scale deployments. However, the evidence 

from both infrastructure and medical imaging 

suggests that the cost of undetected hardware 

failures can be far greater, manifesting in missed 

defects, erroneous diagnoses, and loss of public 

trust (Ferraris et al., 2023; Bhayana, 2024). 

Moreover, as GPU vendors increasingly integrate 

diagnostic capabilities into their platforms, the 

marginal cost of utilizing these features is likely to 

decrease, making them accessible to a wider range 

of users (NVIDIA, 2022; Advanced Micro Devices, 

2023). 

Another counter-argument holds that algorithmic 

redundancy and ensemble methods can 

compensate for hardware faults, rendering 

diagnostics unnecessary. While redundancy can 

mitigate some forms of error, it does not address 

the root cause of hardware instability and may 

even obscure it by averaging out anomalies (Savino 

and Tondolo, 2023). Factory-grade diagnostics, by 

contrast, provide direct insight into the physical 

state of the computational substrate, enabling 

targeted interventions that preserve both 

efficiency and accuracy. 

Looking forward, the integration of GPU 

diagnostics into AI governance frameworks 

represents a promising avenue for research and 

policy development. Regulatory bodies concerned 

with the safety of automated infrastructure 

inspection or medical diagnosis could require 

diagnostic telemetry as part of certification and 

auditing प्रक्रesses, much as they require calibration 

records for physical instruments (Marco Zucca et 

al., 2024). Such requirements would not only 

enhance safety but also incentivize manufacturers 

and operators to prioritize hardware reliability as 
a core design criterion. 

Future research should also explore the interaction 

between diagnostic data and machine learning 

models themselves. One intriguing possibility is the 

development of hardware-aware AI systems that 

adapt their behavior based on real-time diagnostic 

inputs, dynamically adjusting workloads, precision 

levels, or model architectures to maintain optimal 

performance (Lulla et al., 2025). In structural 

health monitoring, this could enable more reliable 

real-time inspection under variable environmental 

conditions, while in radiology it could support 

consistent diagnostic quality across heterogeneous 

clinical infrastructures. 

CONCLUSION 

This article has advanced the argument that 

factory-grade GPU diagnostic automation is a 

foundational component of contemporary AI 

systems in both infrastructure monitoring and 

radiology. By synthesizing evidence from 
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computer vision, medical imaging, and hardware 

engineering, it has demonstrated that hardware 

health is not a peripheral concern but a central 

determinant of algorithmic reliability, 

transparency, and ethical accountability. The 

diagnostic framework articulated by Lulla, 

Chandra, and Ranjan (2025) provides a compelling 

model for how GPUs can be transformed from 

opaque accelerators into self-monitoring scientific 

instruments, thereby strengthening the epistemic 

foundations of artificial intelligence. As AI 

continues to permeate safety-critical domains, the 

integration of such diagnostics will be essential for 

sustaining public trust and scientific integrity. 

REFERENCES 

1. Advanced Micro Devices, Inc. Introducing AMD 

CDNA 3 Architecture. 2023. 

2. Johnson, Alistair, Pollard, Tom, Mark, Roger, 

Berkowitz, Seth, Horng, Steven. Mimic-cxr 

database. PhysioNet. 2024. 

3. Ferraris, Claudia, Amprimo, Gianluca, Pettiti, 

Giuseppe. Computer vision and image 

processing in structural health monitoring: 

overview of recent applications. Signals. 2023. 

4. Lulla, K., Chandra, R., Ranjan, K. Factory-grade 

diagnostic automation for GeForce and data 

centre GPUs. International Journal of 

Engineering, Science and Information 

Technology. 2025. 

5. Huang, Linjie et al. Deep learning for automated 

multiclass surface damage detection in bridge 

inspections. Automation in Construction. 2024. 

6. Bhayana, Rajesh. Chatbots and large language 

models in radiology: a practical primer for 

clinical and research applications. Radiology. 

2024. 

7. Cui, Dashun, Zhang, Chunwei. Crack detection 

of curved surface structure based on multi-

image stitching method. Buildings. 2024. 

8. Najjar, Reabal. Redefining radiology: a review 

of artificial intelligence integration in medical 

imaging. Diagnostics. 2023. 

9. Wang, Zhanyu, Liu, Lingqiao, Wang, Lei, Zhou, 

Luping. R2gengpt: Radiology report generation 

with frozen llms. Meta-Radiology. 2023. 

10. NVIDIA. H100 tensor core GPU architecture 

overview. 2022. 

11. Yaacob, Norsuzila et al. Real-time pavement 

crack detection based on artificial intelligence. 

Journal of Advanced Research in Applied 

Sciences and Engineering Technology. 2024. 

12. Cheng, Min-Yuan, Sholeh, Moh Nur, Kwek, 

Alvin. Computer vision-based post-earthquake 

inspections for building safety assessment. 

Journal of Building Engineering. 2024. 

13. Abdullah, Abdullah, Kim, Seong Tae. Automated 

radiology report labeling in chest X-ray 

pathologies: development and evaluation of a 

large language model framework. JMIR Medical 

Informatics. 2025. 

14. Irvin, Jeremy et al. Chexpert: A large chest 

radiograph dataset with uncertainty labels and 

expert comparison. AAAI Conference on 

Artificial Intelligence. 2019. 

15. Salam, Babak et al. Large language models for 

error detection in radiology reports: a 

comparative analysis between closed-source 

and privacy-compliant open-source models. 

European Radiology. 2025. 

16. Jiang, Yali et al. Machine learning-driven 

ontological knowledge base for bridge 

corrosion evaluation. IEEE Access. 2023. 

17. Bachiri, Tahar et al. Numerical modelling of 

bridge deck reinforcement corrosion based on 



Volume 06 Issue 01-2026 149 

                 

 
 

   
  
 
 

International Journal of Advance Scientific Research  
(ISSN – 2750-1396) 
VOLUME 06 ISSUE 01   Pages: 139-149 

OCLC – 1368736135   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

analysis of GPR data. International Review of 

Applied Sciences and Engineering. 2024. 

18. Marco Zucca et al. Climate change impact on 

corrosion of reinforced concrete bridges and 

their seismic performance. Applied Sciences. 

2024. 

19. Xu, Jie, Niu, Sijie, Wang, Zhifeng. Object tracking 

method based on edge detection and 

morphology. EURASIP Journal on Advances in 

Signal Processing. 2024. 

20. Li, Xiaoxu et al. A simple scheme to amplify 

inter-class discrepancy for improving few-shot 

fine-grained image classification. Pattern 

Recognition. 2024. 

21. Savino, Pierclaudio, Tondolo, Francesco. Civil 

infrastructure defect assessment using pixel-

wise segmentation based on deep learning. 

Journal of Civil Structural Health Monitoring. 

2023. 

 

 


