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ABSTRACT

The accelerating convergence of artificial intelligence, large-scale computer vision, and high-performance
computing has transformed both industrial infrastructure monitoring and data-intensive clinical imaging.
These domains now rely on heterogeneous graphics processing unit ecosystems that must operate
continuously under heavy computational and environmental stress while maintaining reliability,
determinism, and reproducibility. Recent research has demonstrated that even small deviations in GPU
health, thermal stability, or firmware state can propagate into subtle model degradation, unpredictable
inference errors, and biased decision-making in safety-critical applications. Within this evolving context,
factory-grade diagnostic automation for GPUs has emerged as a foundational technological layer that
underpins the credibility of artificial intelligence pipelines, as rigorously articulated in the work of Lulla,
Chandra, and Ranjan (2025). Their investigation into automated diagnostic infrastructures for GeForce and
data-centre GPUs represents a critical inflection point in understanding how hardware-level introspection,
telemetry, and predictive maintenance shape the epistemic trustworthiness of computational intelligence.

This article develops a comprehensive theoretical and applied framework that situates factory-grade GPU
diagnostic automation at the centre of modern computer-vision-driven structural health monitoring and
radiology-scale machine learning systems. Drawing on contemporary advances in crack detection, bridge
inspection, surface damage analysis, and medical image interpretation, it argues that hardware reliability
is no longer an invisible substrate but a co-determinant of algorithmic validity. By synthesizing research
on deep learning-based defect detection, pixel-wise segmentation, UAV-enabled imaging, and large
language model-assisted radiology reporting, the paper demonstrates that GPU diagnostics mediate not
only performance but also fairness, reproducibility, and safety across these fields. The theoretical
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contribution lies in framing GPU diagnostic automation as a form of infrastructural epistemology that
governs how evidence is produced, processed, and trusted in digital sensing environments.

Methodologically, the study adopts a multi-layered analytical design that integrates literature-based
system modeling, comparative architectural analysis of modern GPU platforms, and conceptual mapping
of diagnostic telemetry to machine learning reliability. This approach allows for the exploration of how
automated fault detection, thermal profiling, memory integrity verification, and firmware consistency
influence the stability of convolutional neural networks and large language models when deployed in real-
world inspection and medical settings. Results are interpreted through a critical lens that connects
observed diagnostic capabilities with reported improvements in surface defect recognition, bridge damage
detection, and radiology report accuracy. The findings suggest that hardware-aware Al pipelines exhibit
measurably higher robustness, reduced drift, and greater transparency, corroborating the necessity of
integrating factory-grade diagnostics into end-to-end system design (Lulla et al., 2025).

The discussion extends these results into a broader scholarly debate concerning the invisibility of
infrastructure in artificial intelligence research. It challenges the prevailing software-centric paradigm by
demonstrating that GPU health monitoring constitutes a form of methodological control analogous to
calibration in traditional scientific instrumentation. The article further explores ethical and regulatory
implications, particularly in contexts such as post-earthquake building safety assessment and automated
medical diagnosis, where erroneous outputs may carry severe societal consequences. Ultimately, this work
advances the argument that factory-grade GPU diagnostic automation is not merely a technical
convenience but a scientific necessity for sustaining the integrity of Al-driven knowledge production in
both civil engineering and radiological practice.

KEYwoRrbps

GPU diagnostics, computer vision, structural health monitoring, radiology Al, deep learning infrastructure,
hardware reliability

INTRODUCTION throughput parallel proceSS{ng, arequirement that
has elevated GPUs from peripheral accelerators to

industrial knowledge (Ferraris et al., 2023). This
infrastructural centrality has, however, introduced
a paradox. While Al research has invested
enormous intellectual and financial capital into
improving algorithms, datasets, and model
architectures, comparatively little attention has
been devoted to the physical and operational

intelligence is increasingly defined by its
dependence on large-scale = computational
infrastructures, within which graphics processing
units have become the primary engines of learning,
inference, and data transformation. Across
domains as diverse as civil infrastructure
inspection and clinical radiology, deep neural

networks now operate on streams of high-
resolution visual data that require sustained, high-

condition of the hardware that executes these
models. The assumption that GPUs function as
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neutral, stable substrates has become increasingly
untenable, particularly as systems scale into
heterogeneous, continuously operating clusters
deployed in harsh industrial or clinical
environments (Lulla et al., 2025).

In structural health monitoring, for instance,
computer vision systems now routinely inspect
bridges, pavements, and buildings for cracks,
corrosion, and other forms of deterioration. These
systems employ convolutional neural networks,
segmentation models, and feature fusion
algorithms that process vast volumes of imagery
captured by drones, mobile sensors, or fixed
cameras (Huang et al., 2024). The reliability of such
models is often evaluated in terms of accuracy,
precision, and recall, yet these metrics implicitly
presuppose that the underlying computational
hardware performs deterministically and without
degradation. Empirical studies in UAV-enabled
bridge inspection have shown that even small
fluctuations in image quality or processing latency
can lead to missed defects or false positives, with
significant implications for public safety (Wang et
al., 2024). When these fluctuations originate from
GPU overheating, memory corruption, or firmware
inconsistencies, they are rarely detected or
accounted for within conventional evaluation
frameworks, thereby introducing a hidden layer of
epistemic uncertainty.

A similar dynamic is evident in medical imaging,
where large language models and vision-language
systems are increasingly integrated into radiology
workflows to generate, label, and validate
diagnostic reports (Abdullah and Kim, 2025). The
promise of these systems lies in their capacity to
reduce human error, increase throughput, and
standardize interpretations across institutions

(Kao and Kao, 2025). Yet radiological evidence is
among the most consequential forms of data in

modern  healthcare, informing life-altering
decisions about diagnosis, treatment, and
prognosis. In this context, any undetected

instability in the GPU hardware that supports
image reconstruction, feature extraction, or report
generation risks undermining the clinical validity
of the entire pipeline (Bhayana, 2024). The
growing reliance on foundation models trained on
massive datasets such as MIMIC-CXR and CheXpert
further amplifies this risk, as these models are
sensitive to subtle numerical perturbations that
may arise from hardware faults (Johnson et al,,
2024; Irvin et al,, 2019).

The work of Lulla, Chandra, and Ranjan (2025)
marks a decisive intervention in this landscape by
demonstrating how factory-grade diagnostic
automation can be systematically embedded
within GPU ecosystems to provide continuous,
fine-grained visibility into hardware health. Their
research shows that automated diagnostics are
capable of detecting thermal anomalies, voltage
irregularities, memory errors, and firmware
mismatches before they escalate into performance
degradation or outright failure. Importantly, this
diagnostic layer operates not as an ad hoc
troubleshooting tool but as an integral component
of the GPU lifecycle, from manufacturing and
deployment to operation and maintenance. By
framing GPU health as a measurable, monitorable,
and actionable variable, their work challenges the
prevailing assumption that hardware reliability is
an externality rather than a core determinant of
computational validity.

From a theoretical perspective, this shift invites a
re-conceptualization of artificial intelligence
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systems as socio-technical assemblages in which
algorithms, data, and hardware co-produce
outcomes. In the tradition of science and
technology studies, instruments are not passive
conduits but active mediators of knowledge,
shaping what can be observed, measured, and
inferred (Savino and Tondolo, 2023). GPUs, as the
primary instruments of deep learning, thus
warrant the same degree of scrutiny and
calibration that scientists apply to microscopes,
sensors, or spectrometers. In civil engineering, for
example, the detection of micro-cracks in concrete
using Mask R-CNN or similar architectures
depends not only on the quality of training data but
also on the numerical stability of convolution
operations executed on GPUs (Huang et al.,, 2024).
If these operations are compromised by hardware
faults, the resulting defect maps may misrepresent
structural  conditions, leading to flawed
maintenance decisions.

The historical evolution of computer vision in
infrastructure inspection underscores this point.
Early approaches relied on manual visual
inspection or simple edge detection algorithms
that were computationally lightweight but prone to
subjectivity and inconsistency (Xu et al., 2024). The
advent of deep learning enabled far more
sophisticated analyses, including multi-class
damage detection, pixel-wise segmentation, and
three-dimensional reconstruction of surfaces
(Cheng et al., 2024). These advances, however,
came at the cost of dramatically increased
computational complexity, binding the epistemic
quality of inspection outcomes ever more tightly to
GPU performance. As models grew deeper and
datasets larger, the margin for hardware-induced
error narrowed, making factory-grade diagnostics

a prerequisite for trustworthy deployment (Lulla
etal., 2025).

In radiology, a parallel historical trajectory can be
observed. Traditional image interpretation
depended on the visual acuity and experience of
clinicians, augmented by relatively simple digital
processing tools. The integration of AI has
introduced automated report generation, anomaly
detection, and cross-modal reasoning,
transforming radiological practice into a hybrid of
human and machine cognition (Salam et al., 2025).
Yet this transformation has also rendered
radiology more vulnerable to the opaque failures of
complex computational systems. A corrupted GPU
memory cell or an unstable tensor core may
introduce subtle distortions into an image or a
generated report, distortions that are unlikely to be
detected by either clinicians or conventional
software tests (Najjar, 2023). The epistemic stakes
of such failures are profound, implicating patient
safety, legal liability, and public trust.

Despite these converging pressures, the scholarly
literature has tended to treat hardware as a
background condition rather than a variable of
interest. Research on surface damage detection, for
instance, focuses on improving feature extraction,
data augmentation, and network architectures,
with little discussion of how GPU reliability affects
training convergence or inference stability (Li etal,
2024). Similarly, studies on automated radiology
reporting emphasize linguistic accuracy and
clinical relevance while overlooking the
computational substrates that enable these
capabilities (Wang et al.,, 2023). This gap is not
merely technical but conceptual, reflecting a
broader tendency to separate software intelligence
from material infrastructure.
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The present article addresses this gap by
articulating a comprehensive framework that
integrates factory-grade GPU diagnostic
automation into the theory and practice of Al-
driven inspection and imaging. By synthesizing
insights from civil engineering, computer vision,
radiology, and hardware architecture, it argues
that diagnostic telemetry should be understood as
a form of methodological metadata that
contextualizes and stabilizes Al outputs. This
perspective builds on the empirical evidence
provided by Lulla et al. (2025), extending it into a
broader epistemological and socio-technical
analysis. The central thesis is that without
systematic, automated insight into GPU health, the
outputs of deep learning systems cannot be fully
trusted, regardless of their algorithmic
sophistication.

The remainder of this article develops this thesis
through an extensive methodological exposition, a
detailed interpretive analysis of results drawn
from the literature, and a theoretically rich
discussion that situates GPU diagnostics within
contemporary debates about Al reliability,
transparency, and governance. By doing so, it seeks
to reposition hardware diagnostics from the
periphery to the centre of scholarly and industrial
attention, thereby contributing to a more holistic
and resilient understanding of artificial intelligence
in both infrastructure and medicine.

METHODOLOGY

The methodological orientation of this study is
grounded in the recognition that factory-grade GPU
diagnostic automation cannot be adequately
understood through a single disciplinary lens.
Instead, it requires a multi-layered analytical

approach that bridges hardware engineering,
computer vision, and applied artificial intelligence.
To achieve this integration, the methodology
adopted here is primarily conceptual-analytical,
drawing on systematic synthesis of peer-reviewed
literature, architectural analysis of GPU platforms,
and interpretive mapping between diagnostic
telemetry and Al performance indicators. This
approach aligns with the growing body of research
in infrastructure-aware computing, which treats
hardware not as a black box but as an active
participant in computational epistemology (Lulla
etal., 2025).

The first methodological layer involves a
comprehensive examination of contemporary GPU
architectures and their diagnostic capabilities.
Modern accelerators such as NVIDIA’s H100
Tensor Core GPUs and AMD’s CDNA 3 architecture
represent a departure from earlier generations in
their emphasis on integrated telemetry, error
correction, and predictive maintenance (NVIDIA,
2022; Advanced Micro Devices, 2023). These
platforms incorporate sensors for temperature,
power consumption, and voltage stability, as well
as mechanisms for detecting memory faults and
execution errors. The analysis draws on vendor
documentation and independent evaluations to
map how these diagnostic features operate in
practice and how they can be accessed through
software interfaces. This architectural perspective
provides the foundation for understanding how
factory-grade diagnostics, as described by Lulla et
al. (2025), are implemented at scale.

The second methodological layer focuses on the
role of GPUs within Al pipelines for infrastructure
inspection and radiology. Here, the study
synthesizes findings from a wide range of
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computer vision and medical imaging research to
identify the computational demands and
sensitivities of state-of-the-art models. For
instance, crack detection in curved surfaces using
multi-image stitching requires precise alignment
and interpolation operations that are highly
sensitive to numerical precision and memory
integrity (Cui and Zhang, 2024). Similarly, deep
feature fusion for bridge damage detection
involves the aggregation of high-dimensional
tensors across multiple network layers, a process
that can be disrupted by even transient hardware
faults (Eltahir et al, 2023). In radiology, large
language model-based report generation depends
on stable matrix multiplications and attention
mechanisms that are likewise vulnerable to
hardware-level perturbations (Kao and Kao, 2025).
By correlating these computational patterns with
known GPU failure modes, the methodology
establishes a conceptual link between diagnostics
and model reliability.

The third methodological layer consists of
interpretive analysis, in which the diagnostic data
described in the literature are mapped onto Al
performance outcomes. While this study does not
involve direct experimentation, it leverages
reported results from numerous empirical
investigations to infer how hardware health
influences accuracy, robustness, and
generalizability. For example, research on real-
time pavement crack detection has demonstrated
that model performance degrades wunder
conditions of high computational load and thermal
stress, suggesting a potential role for diagnostic-
guided load balancing (Yaacob et al., 2024). In
radiology, comparative analyses of closed-source
and open-source language models have highlighted
variability in error detection that may be partly

attributable to differences in underlying hardware
environments (Salam et al., 2025). These findings
are interpreted through the lens of factory-grade
diagnostics, as conceptualized by Lulla et al
(2025), to elucidate how automated monitoring
could mitigate such variability.

A critical component of the methodology is the
systematic incorporation of scholarly debate and
counter-arguments. Some researchers have argued
that software-level redundancy and algorithmic
robustness are sufficient to compensate for
hardware faults, rendering extensive diagnostics
unnecessary (Ferraris et al., 2023). Others contend
that the cost and complexity of implementing
factory-grade monitoring outweigh its benefits,
particularly in resource-constrained settings
(Savino and Tondolo, 2023). These positions are
examined in light of the evidence provided by both
infrastructure inspection and radiology studies, as
well as the diagnostic efficiencies reported by Lulla
et al. (2025). By juxtaposing competing
perspectives, the methodology ensures that
conclusions are not merely descriptive but
critically grounded.

Finally, the study adopts a reflexive stance toward
its own limitations. The reliance on secondary
sources means that causal inferences about GPU
diagnostics and Al performance must be made
cautiously, and the diversity of application contexts
complicates direct comparison. Nevertheless, by
triangulating across multiple domains and levels of
analysis, the methodology aims to provide a robust
and nuanced understanding of how factory-grade
GPU diagnostics function as a foundational layer in
contemporary Al systems.

RESuLTS
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The interpretive synthesis of the literature reveals
a consistent and theoretically significant pattern:
Al systems that are implicitly or explicitly
supported by robust GPU diagnostic
infrastructures exhibit  greater  stability,
transparency, and epistemic reliability than those
that operate without such support. This pattern is
evident across both civil infrastructure inspection
and radiology-scale medical imaging, despite the
substantial differences between these domains in
terms of data modalities, regulatory environments,
and operational constraints (Ferraris et al., 2023;
Bhayana, 2024).

In the context of structural health monitoring,
numerous studies have documented the sensitivity
of deep learning models to variations in
computational conditions. For instance, bridge
inspection systems that employ automated
multiclass surface damage detection rely on
consistent execution of convolutional and pooling
operations to maintain accuracy across large image
datasets (Huang et al, 2024). When GPUs
experience thermal throttling or memory errors,
these operations may produce subtly distorted
feature maps, leading to misclassification of
defects. Although such distortions are rarely visible
at the pixel level, their cumulative effect can be
substantial, particularly when models are deployed
continuously over long periods, as in real-time
monitoring of critical infrastructure (Wang et al.,
2024).

Research on crack detection and surface damage
analysis further corroborates this dynamic. Multi-
image stitching methods for curved surfaces
depend on precise alignment of overlapping
images, a process that involves intensive floating-
point computation (Cui and Zhang, 2024). If a

GPU’s numerical precision is compromised by
hardware instability, the resulting stitched images
may exhibit misalignments that propagate into
downstream segmentation and classification tasks.
Studies that report inconsistent or context-
dependent performance in such systems often
attribute these issues to data quality or algorithmic
design, yet the evidence suggests that hardware
health may be an under-recognized contributing
factor (Yaacob et al,, 2024).

The diagnostic automation framework described
by Lulla et al. (2025) directly addresses these
vulnerabilities by providing continuous, factory-
grade monitoring of GPU parameters. Their results
demonstrate that automated detection of thermal
anomalies, power fluctuations, and memory faults
enables proactive mitigation strategies, such as
dynamic workload redistribution or targeted
maintenance, that preserve computational
integrity. When interpreted alongside the
computer vision literature, these findings imply
that many of the performance instabilities
observed in infrastructure inspection systems
could be reduced through systematic integration of
GPU diagnostics.

A parallel pattern emerges in radiology-scale Al
applications. Large language models for automated
report generation and error detection rely on
stable execution of attention mechanisms and
embedding operations, which are computationally
intensive and highly sensitive to numerical noise
(Kao and Kao, 2025). Comparative studies have
shown that model outputs can vary across
deployments even when software configurations
are identical, a phenomenon that has been difficult
to explain solely in terms of stochastic training
processes (Salam et al.,, 2025). The existence of
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such variability aligns with the diagnostic
perspective advanced by Lulla et al. (2025), which
suggests that undetected hardware differences and
degradations may introduce subtle but systematic
biases into Al outputs.

The use of large-scale radiology datasets such as
MIMIC-CXR and CheXpert further amplifies the
importance of hardware reliability. Training and
inference on these datasets involve billions of
operations and prolonged GPU utilization,
conditions under which even minor hardware
faults can accumulate into significant deviations
(Johnson et al, 2024; Irvin et al, 2019). The
absence of factory-grade diagnostics in many
research and clinical settings means that such
deviations may go unnoticed, potentially
undermining the reproducibility and clinical
validity of Al-assisted diagnoses.

Taken together, these results support a
reinterpretation of Al performance metrics as
conditional on hardware health. Accuracy,
precision, and recall are not solely functions of data
and algorithms but are co-produced by the physical
state of the GPUs that execute them. The diagnostic
automation framework articulated by Lulla et al.
(2025) thus emerges as a critical enabler of reliable
Al transforming hardware from a hidden variable
into a measurable and manageable component of
system performance.

DiscussioN

The implications of these findings extend far
beyond technical optimization, reaching into the
epistemological, ethical, and institutional
dimensions of artificial intelligence. At a
fundamental level, the integration of factory-grade
GPU diagnostic automation challenges the

prevailing software-centric paradigm that has
dominated Al research and practice. By
foregrounding hardware health as a determinant of
algorithmic validity, it invites a reconfiguration of
how scientific and industrial communities
conceptualize reliability, accountability, and trust
in computational systems (Lulla et al., 2025).

From a theoretical standpoint, this shift resonates
with long-standing debates in the philosophy of
science about the role of instruments in knowledge
production. Just as the calibration of a telescope or
microscope shapes what can be observed and
inferred, the diagnostic state of a GPU shapes the
outputs of deep learning models. In structural
health monitoring, for example, the identification
of micro-cracks or early-stage corrosion is an
inferential act mediated by layers of computation
that depend on stable hardware execution (Bachiri
et al, 2024). When GPU diagnostics reveal
anomalies, they effectively signal a need for
epistemic caution, akin to a warning that a sensor
may be misaligned or degraded.

This instrumental perspective also reframes
debates about algorithmic bias and fairness. Much

of the current discourse focuses on data
representation and model architecture, yet
hardware-induced variability may introduce

systematic distortions that disproportionately
affect certain classes of inputs. In bridge inspection,
for instance, models may be more sensitive to
subtle surface textures that are easily corrupted by
numerical noise, leading to under-detection of
specific defect types (Jiang et al., 2023). Factory-
grade diagnostics provide a means of detecting and
correcting such distortions at their source, thereby
contributing to a more equitable and reliable
inspection regime.
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In radiology, the ethical stakes are even higher.
Automated report generation systems are
increasingly used to support clinical decision-
making, raising concerns about accountability
when errors occur (Najjar, 2023). If a misdiagnosis
can be traced to an undetected GPU fault, the locus
of responsibility becomes diffuse, implicating not
only clinicians and software developers but also
hardware manufacturers and system operators.
The diagnostic automation framework described
by Lulla et al. (2025) offers a path toward greater
transparency by making hardware health an
explicit and auditable component of Al workflows.

Critics may argue that the cost and complexity of
implementing factory-grade diagnostics are
prohibitive, particularly in low-resource settings
or small-scale deployments. However, the evidence
from both infrastructure and medical imaging
suggests that the cost of undetected hardware
failures can be far greater, manifesting in missed
defects, erroneous diagnoses, and loss of public
trust (Ferraris et al, 2023; Bhayana, 2024).
Moreover, as GPU vendors increasingly integrate
diagnostic capabilities into their platforms, the
marginal cost of utilizing these features is likely to
decrease, making them accessible to a wider range
of users (NVIDIA, 2022; Advanced Micro Devices,
2023).

Another counter-argument holds that algorithmic
redundancy and ensemble methods can
compensate for hardware faults, rendering
diagnostics unnecessary. While redundancy can
mitigate some forms of error, it does not address
the root cause of hardware instability and may
even obscure it by averaging out anomalies (Savino
and Tondolo, 2023). Factory-grade diagnostics, by
contrast, provide direct insight into the physical

state of the computational substrate, enabling

targeted interventions that preserve both
efficiency and accuracy.
Looking forward, the integration of GPU

diagnostics into Al governance frameworks
represents a promising avenue for research and
policy development. Regulatory bodies concerned
with the safety of automated infrastructure
inspection or medical diagnosis could require
diagnostic telemetry as part of certification and

auditing Yshesses, much as they require calibration

records for physical instruments (Marco Zucca et
al, 2024). Such requirements would not only
enhance safety but also incentivize manufacturers
and operators to prioritize hardware reliability as
a core design criterion.

Future research should also explore the interaction
between diagnostic data and machine learning
models themselves. One intriguing possibility is the
development of hardware-aware Al systems that
adapt their behavior based on real-time diagnostic
inputs, dynamically adjusting workloads, precision
levels, or model architectures to maintain optimal
performance (Lulla et al, 2025). In structural
health monitoring, this could enable more reliable
real-time inspection under variable environmental
conditions, while in radiology it could support
consistent diagnostic quality across heterogeneous
clinical infrastructures.

CoNcLUSION

This article has advanced the argument that
factory-grade GPU diagnostic automation is a
foundational component of contemporary Al
systems in both infrastructure monitoring and
radiology. By synthesizing evidence from
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computer vision, medical imaging, and hardware
engineering, it has demonstrated that hardware
health is not a peripheral concern but a central
determinant of algorithmic reliability,
transparency, and ethical accountability. The
diagnostic framework articulated by Lulla,
Chandra, and Ranjan (2025) provides a compelling
model for how GPUs can be transformed from
opaque accelerators into self-monitoring scientific
instruments, thereby strengthening the epistemic
foundations of artificial intelligence. As Al
continues to permeate safety-critical domains, the
integration of such diagnostics will be essential for
sustaining public trust and scientific integrity.
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