Sustainable Acoustic and Thermal Insulation from Natural and Recycled Fibers: Integrating Circular-Economy Principles into Building Material Science

Authors

  • John E. Harrington Author

Keywords:

natural fibers, thermal insulation, sound absorption, ircular economy

Abstract

This article presents a comprehensive, theory-driven examination of sustainable acoustic and thermal insulation materials derived from natural fibers, agricultural by-products, recycled textiles, and end-of-life household materials. The work synthesizes empirical results and conceptual frameworks from recent investigations into thermal degradation, moisture absorption, antibacterial behavior, acoustic absorption, and composite-reinforcement performance to produce an integrated perspective on how circular-economy principles can be operationalized in building envelopes and interior acoustic treatments. The abstracted narrative spans material selection rationale, physicochemical and microbiological durability, hygrothermal interactions, and acoustic performance mechanisms. It further situates passive insulation strategies within waste-management frameworks and regulatory contexts to propose practical pathways for large-scale adoption. Methodological discussion emphasizes reproducible, text-based experimental protocols and performance evaluation metrics widely reported in the literature. The results section offers descriptive analyses linking fiber morphology, surface chemistry modifications, and panel manufacturing parameters to measurable thermal and acoustic outcomes. The discussion critically examines trade-offs between thermal conductivity and sound absorption, the role of moisture and biodegradation in long-term performance, and the socio-technical barriers to mainstreaming low-cost bio-based insulators in vulnerable contexts. Limitations and future directions are articulated with explicit attention to lifecycle analysis, standardization needs, and scale-up considerations. This integrative article intends to inform material scientists, building engineers, policymakers, and circular-economy stakeholders seeking to advance sustainable insulation technologies.

References

1. Ahmed, A., and A. Qayoum. 2021. Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials. Materials for Renewable and Sustainable Energy 10 (1):1–12. doi:10.1007/s40243-021-00188-8.

2. Asdrubali, F., F. D’Alessandro, and S. Schiavoni. 2015. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies 4:1–17. doi:10.1016/j.susmat.2015.05.002.

3. Asis, P., M. Mvubu, S. Muniyasamy, A. Botha, and R. D. Anandjiwala. 2015. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings92:161–69. doi:10.1016/j.enbuild.2015.01.056.

4. Balaji, A., B. Karthikeyan, J. Swaminathan, and C. Sundar Raj. 2019. Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. Journal of Natural Fibers 16 (4):613–27. doi:10.1080/15440478.2018.1431829.

5. Ballagh, K. O. 1996. Acoustical Properties of Wool. Applied Acoustics 48 (2):101–20. doi:10.1016/0003-682X(95)00042-8.

6. Beheshti, M. H., A. Khavanin, A. Safari Varyani, M. Nizam Bin Yahya, A. Alami, F. Khajenasiri, and R. Talebitooti. 2022. Improving the sound absorption of natural waste material-based sound absorbers using micro-perforated plates. Journal of Natural Fibers 19 (13):5199–210. doi:10.1080/15440478.2021.1875364.

7. Berardi, U., and G. Iannace. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94 (December):840–52. doi:10.1016/j.buildenv.2015.05.029.

8. Berardi, U., G. Iannace, and M. Di Gabriele. 2016. Characterization of sheep wool panels for room acoustic applications. In Proceedings of Meetings on Acoustics, 28:15001. Acoustical Society of America. 10.1121/2.0000336.

9. Bousshine, S., M. Ouakarrouch, A. Bybi, N. Laaroussi, M. Garoum, and A. Tilioua. 2022. Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Applied Acoustics 187:108520. doi:10.1016/j.apacoust.2021.108520.

10. Cascone, S. M., S. Cascone, and M. Vitale. 2020. Building insulating materials from agricultural by-products: a review. Smart Innovation, Systems and Technologies 163:309–18. doi:10.1007/978-981-32-9868-2_26.

11. Dénes, O., I. Florea, and D. Lucia Manea. 2019. Utilization of sheep wool as a building material. Procedia Manufacturing 32:236–41. doi:10.1016/j.promfg.2019.02.208.

12. Hajiha, H., and M. Sain. 2015. The use of sugarcane bagasse fibres as reinforcements in composites. In Biofiber reinforcements in composite materials 525–49. Elsevier Inc. doi:10.1533/9781782421276.4.525.

13. Karimi, F., P. Soltani, M. Zarrebini, and A. Hassanpour. 2008. Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. Journal of Building Engineering 50:104125.

14. Hongisto, V., P. Saarinen, R. Alakoivu, and J. Hakala. 2022. Acoustic properties of commercially available thermal insulators—An experimental study. Journal of Building Engineering 4:104588.

15. Neri, M., M. Pilotelli, M. Traversi, E. Levi, E. Piana, M. Bannó, E. Cuerva, P. Pujadas, A. Guardo. 2021. Conversion of End-of-Life Household Materials into Building Insulating Low-Cost Solutions for the Development of Vulnerable Contexts: Review and Outlook towards a Circular and Sustainable Economy. Sustainability 13:4397.

16. Ragossnig, A. M., and D. R. Schneider. 2019. Circular Economy, Recycling and End-of-Waste. Waste Management Research 37:109–111.

17. European Commission. Waste Framework Directive. Environment: Waste and Recycling. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-framework-directive_en (accessed on 9 September 2022).

18. UNIDO—United Nations Industrial Development Organization. Circular Economy. Available online: https://www.unido.org/our-focus-cross-cutting-services/circular-economy (accessed on 9 September 2022).

19. Circular Economy: Definition, Importance and Benefits. European Parliament. Available online: https://www.europarl.europa.eu/news/en/headlines/economy/20151201STO05603/circular-economy-definition-importance-and-benefits (accessed on 11 October 2022).

20. Smith, K. A. 2021. When Heineken Bottles Were Square. Smithsonian Magazine. Available online: https://www.smithsonianmag.com/arts-culture/when-heineken-bottles-were-square-62138490/ (accessed on 31 March 2021).

21. Karimi, F., P. Soltani, M. Zarrebini, and A. Hassanpour. 2008. Acoustic and thermal performance of polypropylene nonwoven fabrics for insulation in buildings. Journal of Building Engineering 50:104125.

22. Lulla, K., R. Chandra, and K. Sirigiri. 2025. Proxy-based thermal and acoustic evaluation of cloud GPUs for AI training workloads. Emerging Frontiers Library for The American Journal of Applied Sciences 7 (07):111–127.

23. Hongisto, V., P. Saarinen, R. Alakoivu, and J. Hakala. 2022. Acoustic properties of commercially available thermal insulators—An experimental study. Journal of Building Engineering 4:104588.

24. Beheshti, M. H., A. Khavanin, A. Safari Varyani, M. Nizam Bin Yahya, A. Alami, F. Khajenasiri, and R. Talebitooti. 2022. Improving the sound absorption of natural waste material-based sound absorbers using micro-perforated plates. Journal of Natural Fibers 19 (13):5199–210. doi:10.1080/15440478.2021.1875364.

Downloads

Published

2025-08-31

How to Cite

Sustainable Acoustic and Thermal Insulation from Natural and Recycled Fibers: Integrating Circular-Economy Principles into Building Material Science. (2025). SciQuest Research Database, 5(08), 53-63. https://sciencebring.org/index.php/sqrd/article/view/29