Hybrid Cloud Data Warehousing And Lakehouse Convergence: Architectural, Transactional, And Performance Perspectives
Keywords:
Data Warehousing, Cloud Lakehouse, Amazon Redshift, Columnar StorageAbstract
The rapid proliferation of data-intensive applications has catalyzed a paradigm shift in the architecture and management of data warehouses. Modern enterprises increasingly demand systems capable of integrating diverse data sources, ensuring high performance, and maintaining robust transactional consistency. This research examines contemporary approaches to cloud-based data warehousing, emphasizing the integration of Amazon Redshift solutions with emerging data lakehouse architectures. Drawing upon canonical studies and recent empirical findings, the study critically analyzes mechanisms such as ACID-compliant table storage, distributed query engines, columnar storage formats, and petabyte-scale operational optimizations. The work contextualizes these developments within a historical trajectory that spans traditional relational data warehouses, the advent of Hadoop-based systems, and the evolution of unified query engines. Through a synthesis of theoretical frameworks, architectural evaluations, and practical deployment strategies, this article identifies key strengths and limitations inherent in current data warehouse designs. Furthermore, it highlights unresolved challenges in scalability, concurrency, and real-time analytics while proposing a structured research agenda aimed at bridging conceptual and operational gaps. Findings indicate that while cloud-native solutions like Redshift and lakehouse systems offer unprecedented flexibility and performance, nuanced considerations in schema design, partitioning strategies, and query optimization remain critical for achieving consistent operational efficiency. The study underscores the necessity for multi-faceted evaluation methodologies that integrate both quantitative performance metrics and qualitative architectural assessments. The implications extend to data-intensive sectors, informing strategic decisions regarding infrastructure investment, workload management, and the adoption of hybrid data platforms.
References
1. Zeng, X., et al. (2023). An Empirical Evaluation of Columnar Storage Formats. PVLDB, 17(1), doi:10.14778/3626292.3626298
2. Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM, 51(1). doi:10.1145/1327452.1327492
3. Melnik, S., et al. (2010). Dremel: Interactive Analysis of Web-Scale Datasets. VLDB, doi:10.1145/1953122.1953148
4. Hai, R., et al. (2023). Data Lakes: A Survey of Functions and Systems. IEEE TKDE, 35(12). doi:10.1109/TKDE.2023.3270101
5. Zaharia, M., et al. (2016). Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM, 59(11). doi:10.1145/2934664
6. Levandoski, J., et al. (2024). BigLake: BigQuery’s Evolution Toward a Multi Cloud Lakehouse. SIGMOD. doi:10.1145/3626246.3653388
7. Camacho-Rodríguez, J., et al. (2024). LST-Bench: Benchmarking Log-Structured Tables in the Cloud. Proc. ACM on Management of Data. doi:10.1145/3639314
8. Sun, L., Franklin, M. J., Wang, J., & Wu, E. (2016). Skipping-oriented partitioning for columnar layouts. Proc. VLDB Endow., 10(4), 421–432
9. Stonebraker, M. (2014). Why the ’data lake’ is really a ’data swamp’. BLOG@CACM
10. Thusoo, A., et al. (2010). Hive - a petabyte scale data warehouse using Hadoop. ICDE, IEEE, 996–1005
11. Zaharia, M., et al. (2018). Accelerating the machine learning lifecycle with mlflow. IEEE Data Eng. Bull., 41, 39–45
12. Armbrust, M., et al. (2020). Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores. PVLDB, 13(12). doi:10.14778/3415478.3415560
13. Venkataraman, S., et al. (2016). SparkR: Scaling R programs with Spark. SIGMOD, 1099–1104
14. Okolnychyi, A., et al. (2024). Petabyte-Scale Row-Level Operations in Data Lakehouses. PVLDB, 17(12). doi:10.14778/3685800.3685834
15. Ivanov, T., et al. (2020). The Impact of Columnar File Formats on SQL on-Hadoop. Concurrency and Computation: Practice and Experience, 32(20). doi:10.1002/cpe.5523
16. Thusoo, A., et al. (2009). Hive: A Warehousing Solution over a Map-Reduce Framework. PVLDB, doi:10.14778/1687553.1687609
17. Samwel, T. B., et al. (2022). Photon: A Fast Query Engine for Lakehouse Systems. SIGMOD. doi:10.1145/3514221.3526054
18. Worlikar, S., Patel, H., & Challa, A. (2025). Amazon Redshift Cookbook: Recipes for building modern data warehousing solutions. Packt Publishing Ltd.
19. Ziauddin, M., et al. (2017). Dimensions based data clustering and zone maps. Proc. VLDB Endow., 10(12), 1622–1633
20. Melnik, S., et al. (2020). Dremel: A Decade of Interactive SQL Analysis at Web Scale. PVLDB, 13(12). doi:10.14778/3415478.3415568
21. Wieder, P., & Nolte, H. (2022). Toward Data Lakes as Central Building Blocks
22. Frontiers in Big Data. doi:10.3389/fdata.2022.945720
23. Brill, E., & Brown, R. D. (1996). Learning morphological rules for English and Hebrew. Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Prof. Fatima Zahra El-Haddadi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.